Desktop Developer |

s

" Finalization

Implement methods on your objects that release expensive resources without
needing to wait for garbage collection.

Technology Toolbox

™ VB.NET

o C#

1 SOL Server 2000
(J ASP.NET

a XML

(J VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS0304DT Download the code for
this article, which includes a C#
version and a VB.NET version of
Listing 1.

Discuss

VS0304DT_D Discuss this article in
the C# forum.

Read More
VS0304DT_T Read this article
online. Itincludes Listing 1.

VS0212FB_T “Master Memory
Management” by Francesco Balena

VS0208MS_T “Take Charge of
Garbage Collection” by Mauro
Sant’Anna

VSO0110CE_T C# Explorer, “Manage
C# Objects,” by Bill Wagner

42

/ M ost coding defects in traditional compo-
nent development that aren’t business-

logic—specific are due to memory-management
and object-lifecycle issues—memory leaks, cy-
clic reference counts, failing to call Delete or
Release(), accessing objects that are deallocated
already, and so on. Writing impeccable code
isn’t impossible, but it takes years of experience,
iron discipline, a mature development process,
management’scommitment to quality, and strict
codingand developmentstandards (such as code
review and quality assurance). Most software
projects today lack almost all these ingredients.

One of the .NET platform’s goals is to sim-
plify component development to cope with this
reality and increase the resulting code’s quality.
.NET takes almost all the burden of managing
memory allocation for objects and memory
deallocation off your shoulders. Unlike COM,
.NET doesn’t use reference counting of objects.
It has a sophisticated garbage-collection mecha-
nism that detects when clients no longer use an
object, then destroys the object. However,
NET’s simplification of the object lifecycle can
limitsystem scalability and throughput. I'll show
several ways you can prevent your code from
incurring this cost.

.NET keeps track of accessible paths to the
objectinyour code. An objectis reachableaslong
as at least one client has a reference to the object.
NET keeps reachable objects alive. It considers
unreachable objects to be garbage, so destroying
them does no harm. The garbage collector
traverses the heap of existing objects periodi-
cally; it uses an intricate pointing schema to
detect unreachable objects, then releases the
memory .NET allocates to them (see Figure 1).
As a result, clients don’t need to delete objects

VISUAL STUDIO MAGAZINE

Use .NET Deterministic

by Juval Lowy

explicitly or increment or decrement a reference
count on the objects they create.

Theobjectshould implementamethod called
Finalize() if it has specific cleanup to do. How-
ever, you don’t provide a Finalize() method in
C#—you provideadestructor instead. The com-
piler converts the destructor definition to a
Finalize() method, and also calls your base class’s
Finalize() method. For example, suppose you
have this class definition:

public class MyClass
{
pubTic MyClass(){}
~MyClass(){}
}

The compiler actually generates this code:

public class MyClass
{
public MyClass(){}
protected virtual void Finalize()
{
try
{
//Your destructor code goes here
}
finally
{
base.Finalize(); //everybody has
//one, from Object

}

The garbage collector knows the object has a
Finalize() method by reading the object’s

« APRIL2003 -+ www.visualstudiomagazine.com

metadata, and it calls Finalize() just before it
destroys the object.

If the object holds onto expensive re-
sources such as files, graphics device inter-
face (GDI) objects, communication ports,
or database connections, it releases these
resources only when the garbage collector
calls Finalize(). This happens at an undeter-
mined point in the future—usually when
the process hosting your component is out
of memory (this is called nondeterministic
finalization.) In theory, the expensive re-
sources the object holds might never be
released, which would hamper system
scalability and throughput severely. A few
solutions to the problems nondeterministic
finalization causes are available. They’re
called deterministic finalization, because they
take place at a known, determined time.

New object

>

Garbage

Open and Close—or
Dispose

The first solution is to implement methods
on your object that allow the client to order
explicit cleanup of expensive resources the

L
W

Garbage collecton [________ |

Object 10 HD :> __________

. B $ 0

~ Newobject [=]
L Object 10
_________ Object 8
Object 4 Object 4
Object 3 Object 3
Object 2 Object 2
Object 1 Object 1

object holds. Use this pattern when you can
reallocate the resources the object holds
onto. The object should expose methods
such as Open() and Close(). An object that
encapsulates a file is a good example. The client calls Close() on the
object, allowing the object to release the file. If the client wants to
access the file again, it calls Open(), without re-creating the object.
Many classes in the .NET Framework use this pattern—files,
streams (disk I/O, memory, network), database-access types, and
communication ports.

The main drawback to Close() is that it makes sharing the object
between clients much more complex than COM’s reference count-
ing. The clients must coordinate which one of them is responsible for
calling Close() and when it should be called—that is, when it’s safe to
call Close() without affecting other clients that might still want to use
the object. As a result, the clients are coupled to each other.

Another problem is that you must decide where to implement
Open and Close—on every interface the object supports, on a
dedicated interface, or on the class directly as public methods.
Whichever choice you make inevitably couples clients to your
specific object-finalization mechanism. If the mechanism changes,
then the change triggers a cascade of changes on all the clients.

A more common situation is one in which disposing of the
resources the object holds amounts to destroying the object. In this
case, the object should implement a method called Dispose():

void Dispose(){...}

The object disposes of all its expensive resources when a client calls
Dispose(), and the client shouldn’t try to access the object again. In
essence, you put the same cleanup code in Dispose() that you’d put
in the destructor, except you don’t wait until garbage collection for
the cleanup. If the object’s base class has a Dispose() method, then

VISUAL STUDIO MAGAZINE APRIL 2003 www.visualstudiomagazine.com

Figure 1 .NET Garbage Collection at Work. The garbage collector identifies objects on the
managed heap that their clients no longer use. The garbage collector moves usable objects
down and overrides the garbage, thereby reclaiming the memory they used.

the object should also call its base class’s implementation of Dis-
pose() to dispose of resources the base class holds.

Using Dispose() has similar problems to using Close(). Sharing
the object between clients couples the clients to each otherand to the
object-finalization mechanism. And again, it’s not clear where you
should implement Dispose().

A better design approach to implementing Dispose() is to have
it on a separate interface altogether. This special interface (defined
in the System namespace) is called IDisposable:

public interface IDisposable
{

void Dispose();
}

In the object’s implementation of Dispose(), the object disposes of
all the expensive resources it holds:
public class MyClass : IDisposable
{
public void MyMethod()
{ena M)
public void Dispose()
{
//do object cleanup, call
//base.Dispose() if it has one
}
//More methods and resources

43

Desktop Developer) ‘

Having the Dispose() method on a separate interface allows the
client to use the object’s domain-specific methods, query for the
presence of IDisposable, then call it—regardless of the object’s
actual type and finalization mechanism:

MyClass obj;
obj = new MyClass();
obj.MyMethod();

//Client wants to dispose whatever needs
//disposing:
IDisposable disp = obj as
IDisposable;
if(disp != null)
{
disp.Dispose();

The client uses the “as” operator to call Dispose(). The client doesn’t
P p
know for certain if the object supports IDisposable. The client finds
) PP P
out in a safe manner, because “as” returns null if the object doesn’t
support it.

Clean Up After Exceptions

Whether you use IDisposable or only Dispose() as a method, you
should scope disposing of the resources in try/finally blocks, because
you should still call Dispose() if you get an exception:

MyClass obj;
obj = new MyClass();
try
{
obj.SomeMethod();
}
finally
{
IDisposable disp;
disp = obj as IDisposable;
if(disp!l= null)
{
disp.Dispose();

The problem with the preceding programming model is that the
code gets messy if multiple objects are involved, because every one
of them can throw an exception, and you should still clean up after
using them. To automate calling Dispose() with proper error
handling, C# supports the using statement to generate a try/catch
block automatically. Suppose you have this class definition:

public class MyClass: IDisposable
{
public void SomeMethod(){...}
public void Dispose(){...}
/* Expensive resources here */

44

VISUAL STUDIO MAGAZINE -«

The client code is:

MyClass obj;
obj = new MyClass();
using(obj)
{
obj.SomeMethod();

. 1I-1e C# compiler
converts the destructor
definition to a Finalize()
method, and also calls
your base class’s
Finalize() method.

The C# compiler converts the preceding code to code semantically
equivalent to this:

MyClass obj;
obj = new MyClass();
try
{
obj.SomeMethod();
}
finally
{
if(obj
{

b= nul i)

IDisposable disp;
disp = obj;
disp.Dispose();

You can even stack multiple using statements on top of each
other to handle using multiple objects:

MyClass objl;
MyClass obj2;
MyClass obj3;

objl
obj2
obj3 = new MyClass();

new MyClass();

new MyClass();

|

using(objl)
using(obj2)
using(obj3)

APRIL 2003 + www.visualstudiomagazine.com

Desktop Developer |

F

objl.SomeMethod();
obj2.SomeMethod();
0bj3.SomeMethod();

The using statement has one liability: The compiler-generated
code uses a type-safe, implicit cast to IDisposable from the object.
As a result, the type in the statement must derive from IDisposable,
and the C# compiler enforces this. This precludes using the using
statement with interfaces in the general case, even if the implement-
ing type supports IDisposable.

However, two workarounds allow you to combine interfaces with
the using statement. The first is to derive the interfaces from IDis-
posable. This approach is analogous to having every COM interface
derive from [Unknown so that the interface has the reference-
counting methods. The second workaround is to coerce the type you
use to [Disposable by using an explicit cast to fool the compiler:

public interface IMyInterface
{
void SomeMethod();
}
public class MyClass: IMyInterface,IDisposable
{
public void SomeMethod(){}
public void Dispose(){}
}
IMyInterface obj;
obj = new MyClass();
using((IDisposable)obj)
{
obj.SomeMethod();

Dispose() and the C# destructor aren’t mutually exclusive, and
you should provide both. The reason is simple: When you have
expensive resources to dispose of, there’s no guarantee the client will
actually call Dispose() even if you provide it—for example, if
unhandled exceptions occur on the client side.

Combine Finalize() With Dispose

If the client doesn’t call Dispose(), your fallback is to use the
Finalize() method (the destructor in C#) and do the resources
cleanup there. If Dispose() is called, there’s no point in trying to
dispose of the resources again in Finalize(). If you call Dispose(), the
object should suppress finalization by calling the GC class’s static
SuppressFinalize() method, passing itself as a parameter:

public static void SuppressFinalize(object obj);

This prevents the object from being added to the finalization queue,
as though the object definition doesn’t contain a Finalize() method.

You must pay attention to some more details. The object should
channel the Dispose() and Finalize() implementation to the same
method to enforce the fact that it’s doing exactly the same thing in
either case. The object should handle multiple Dispose() calls. It

46

should also detect in every method whether a client has called
Dispose() already, refuse to execute the method if it has, then throw
an exception instead.

The object should also handle class hierarchies properly and call
its base class’s Dispose() or Finalize() method. Clearly, implement-
ing a bullet-proof Dispose() and Finalize() involves many details
when inheritance is involved. The good news is that you can use a
generic template, available in both C# and VB.NET code, for such
cases (download Listing 1 from the VSM Web site; see the Go
Online box for details). Only the top-most base class in the template
implements [Disposable. Subclasses can’t override this class because
it doesn’t provide a virtual Dispose() method. The top-most base
class’s Dispose() method calls avirtual protected Cleanup() method.
This Cleanup() method serves both IDisposable.Dispose() and
Finalize() (the C# destructor) as the single channeled implementa-
tion of the cleanup code.

The Dispose() method uses the lock statement to synchronize
access to the method, because multiple clients on multiple threads
might try to dispose of the object at the same time. The top-most base
class maintains a Boolean flag called m_Disposed, signaling whether
Dispose() was called already. The first time a client calls Dispose(),
Dispose() sets m_Disposed to true, thereby preventing itself from
calling Cleanup() again. As a result, calling Dispose() multiple times
is benign. The top-most base class provides a thread-safe, read-only
property called Disposed, which every method in the base class or the
subclasses should check before executing method bodies—and throw
ObjectDisposedException if Dispose() was called.

Every class in the hierarchy should implement its version of
Cleanup() if it has cleanup to do. Note also that only the top-most
base class should have a destructor. All the destructor is doing is
delegating to the overridden protected Cleanup(). Of course, .NET
never calls the destructor if you call Dispose() first, because Dis-
pose() suppresses finalization.

Like most other aspects of .NET, object finalization involves a
spectrum of options that cater to the widest range of developer
preferences. At one end of the spectrum, you can let NET manage
the object’s lifecycle and focus only on the business logic. At the
other end, you can use the deterministic finalization template to
ensure application scalability and throughput. You’re on your way
to applying .NET successfully—regardless of where you put your-
self on that spectrum—as long as you understand your program-
ming model’s tradeoffs and implications. vsm

Juval Léwy is a software architect and the principal of IDesign, a
consulting and training company focused on .NET design and migra-
tion. Juval is Microsoft's regional director for the Silicon Valley,
working with Microsoft on helping the industry adopt .NET. This article
derives from his latest book, Programming.NET Components (O'Reilly
& Associates). Contact him at www.idesign.net.

Additional Resources

“Garbage Collection: Automatic Memory Management in the
Microsoft .NET Framework” by Jeffrey Richter:
www.msdn.microsoft.com/msdnmag/issues/1100/gci/
default.aspx

APRIL 2003 www.visualstudiomagazine.com

VISUAL STUDIO MAGAZINE

